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The Inverse Scattering Transform
The Fourier Transform
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solution

PDE ODE
F

F�1

The Inverse Scattering Transform

linear
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2 linear PDEs

solution

Spectral

F [u] = 0 L1( ;u; t, x,�) = 0
L2( ;u; t, x,�) = 0

u = u(t, x)  (t, x,�)

{Lax 
pair

The Inverse Scattering 
Transform (IST) is one 
of the most important 
developments in 
mathematical physics in 
the past 40 years. The 
method is a non-linear 
analogue, and in some 
sense generalization, of 
the Fourier transform, ...
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The theory of relativity

Rµ⌫ = 0

The equivalence principle: gravity affects all bodies in the 
same way, independently of their composition.

Ricci
Curvature

Denote

⌘µ⌫ =
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ds2 = 0
(t2, x2, y2, z2)

(t1, x1, y1, z1)

time

space

light ray

The spacetime interval

and
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ds2 := ⌘µ⌫dx

µ
dx

⌫
gµ⌫dx

µ
dx

⌫

In empty space, Spacetime curves according to Einstein’s 
vacuum equation

p
(dx)2 + (dy)2 + (dz)2 = dt

x

0 = t, x

1 = x, x

2 = y, x

3 = z
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f is easily integrated once g is known
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g (⇣, ⌘) =  (0, ⇣, ⌘)�! 0

The Belinski-Zakharov transform

gµ⌫ =

2
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�f 0 0 0
0 g11 g12 0
0 g21 g22 0
0 0 0 f
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775In matrix form, t = ⇣ � ⌘

light-cone coordinates

In the limit

Rµ⌫ = 0

get

ds

2 = f(�dt

2 + dr

2) + gabdx
a
dx

b

{

Commuting 
operators

{

Lax 
pair

x

a = (�, z)a, b = 1, 2

r = ⇣ + ⌘
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can skip this step

: the dressing matrix

Search for a solution of 
the form

� = I +
NX

s=1

Rs

�� µs
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D1 0 =
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D2 0 =
B0

�+ ↵
 0
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 0

 = � 0
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{
g(0)(�, ⇥)

g(N) = �(0)g(0)

ds2 = f (0)(�dt2 + dr2) + e⇤(0)
(rd�)2 + e�⇤(0)

dz2‘Cylindrical’ metrics:

Take a particular 
“background” 
solution get

Get the N-soliton solution

The dressing method

Thursday, August 1, 13



Solitons (one soliton)
Symmetric chiral equation Einstein equations

g(0) =

"
e⇤(0)

0
0 e�⇤(0)

#
g(0) =

"
r2e⇤(0)

0
0 e�⇤(0)

#

A soliton! Amplitude and 
shape vary...

µs = constant
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µs = !s � t±
p

(!s � t)2 � r2
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Solitons (two solitons)

Theorem: If                       and (# of solitons) = (# of anti-solitons) then 
the solution is asymptotically flat as                 .

The one-soliton solution is never asymptotically flat.

|t| � ⇥

For physical reasons, one would like the metric to be 
asymptotically flat. 

µs = !s � t±
p

(!s � t)2 � r2Pole + =
� =

soliton
anti-soliton

⇤(0) |t|!1����! 0

Both S-S or AS-AS are never asymptotically flat.
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Solitons (two solitons)
Symmetric chiral equation Einstein equations

g(0) =

"
e⇤(0)

0
0 e�⇤(0)

#
g(0) =

"
r2e⇤(0)

0
0 e�⇤(0)

#

⇤(0) = 0 (flat)

S-ASSchwarzschild-Kerr
solution
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Thank you!
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