Congreso Colombiano de Matematicas 2013

Integrability of the vacuum Einstein equation

Yaron Hadad work with Vladimir Zakharov

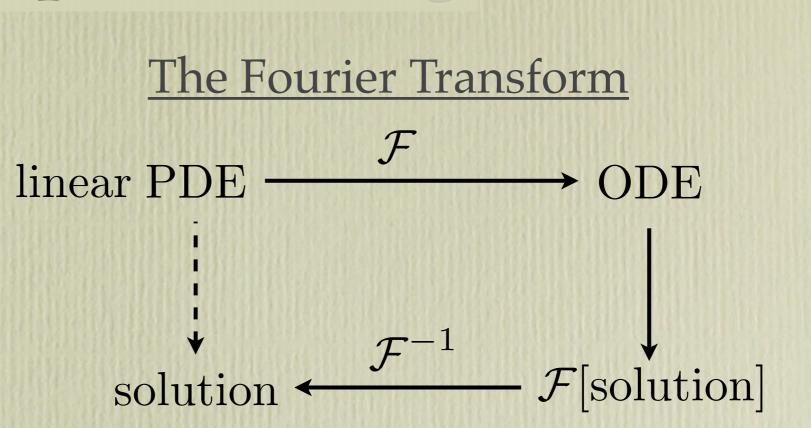
Department of Mathematics University of Arizona

Thursday, August 1, 13

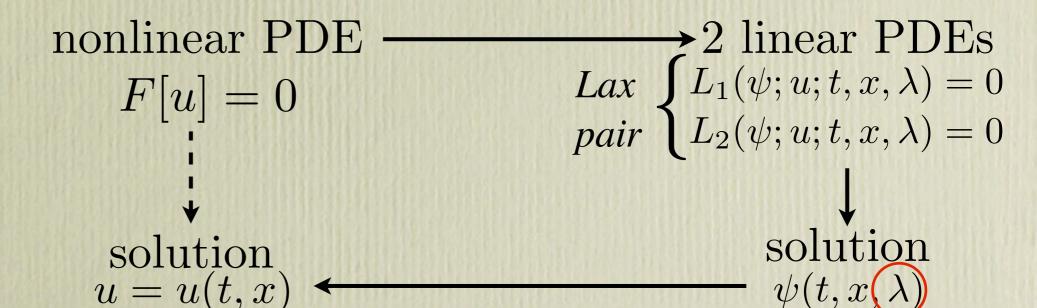
The InverSpectralering Transform

WIKIPEDIA The Free Encyclopedia

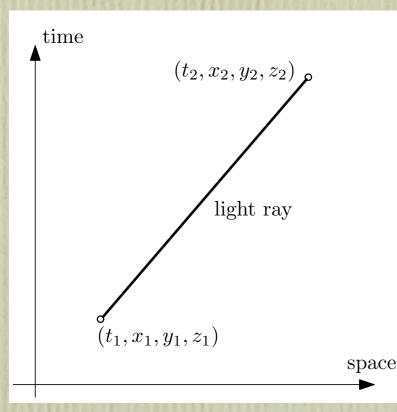
The Inverse Scattering Transform (IST) is one of the most important developments in mathematical physics in the past 40 years. The method is a non-linear analogue, and in some sense generalization, of the Fourier transform, ...



The Inverse Scattering Transform



The theory of relativity



$$\sqrt{(dx)^{2} + (dy)^{2} + (dz)^{2}} = dt \iff ds^{2} = 0$$
Denote $x^{0} = t, x^{1} = x, x^{2} = y, x^{3} = z$
and $\eta_{\mu\nu} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
The spacetime interval $ds^{2} := g_{\mu\nu}dx^{\mu}dx^{\nu}$

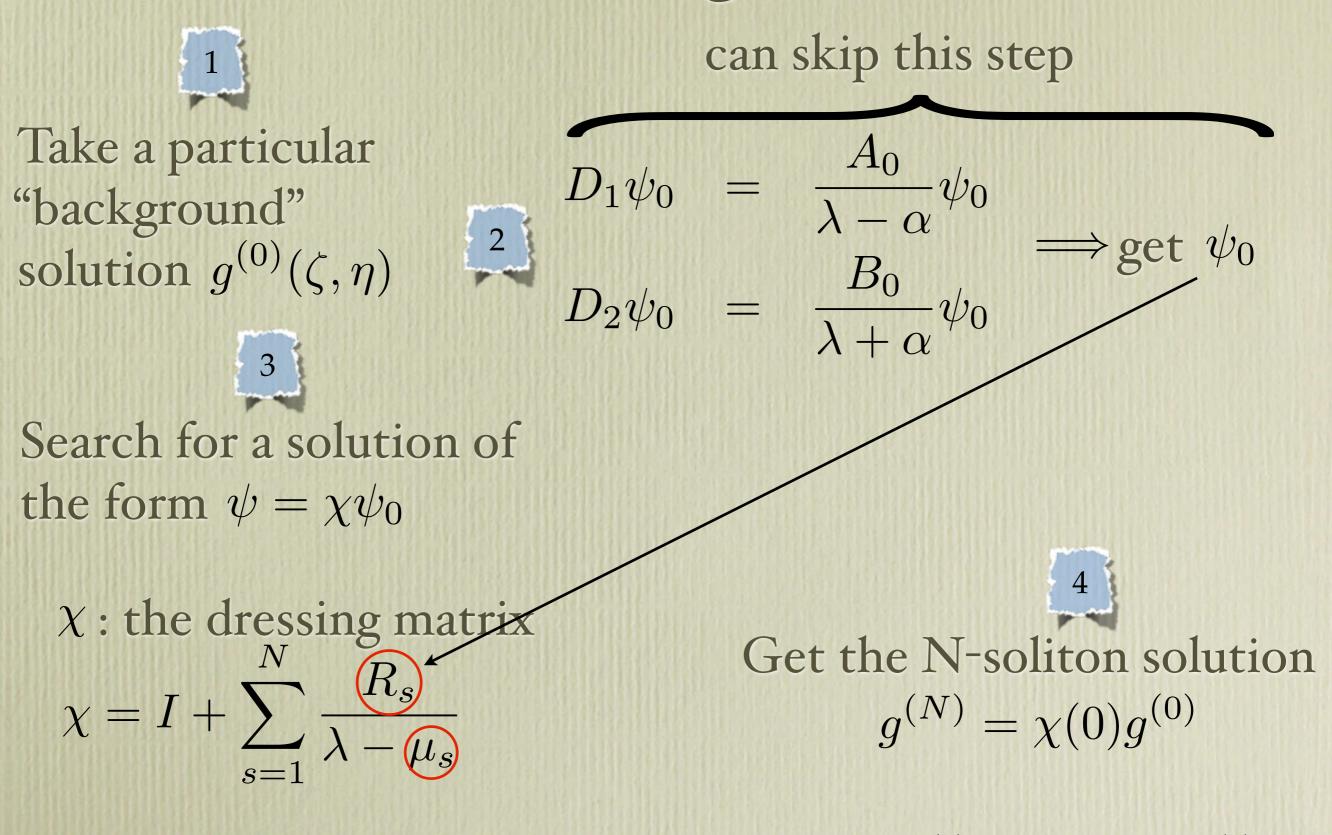
<u>The equivalence principle:</u> gravity affects all bodies in the same way, independently of their composition.

In empty space, Spacetime curves according to Einstein's vacuum equation

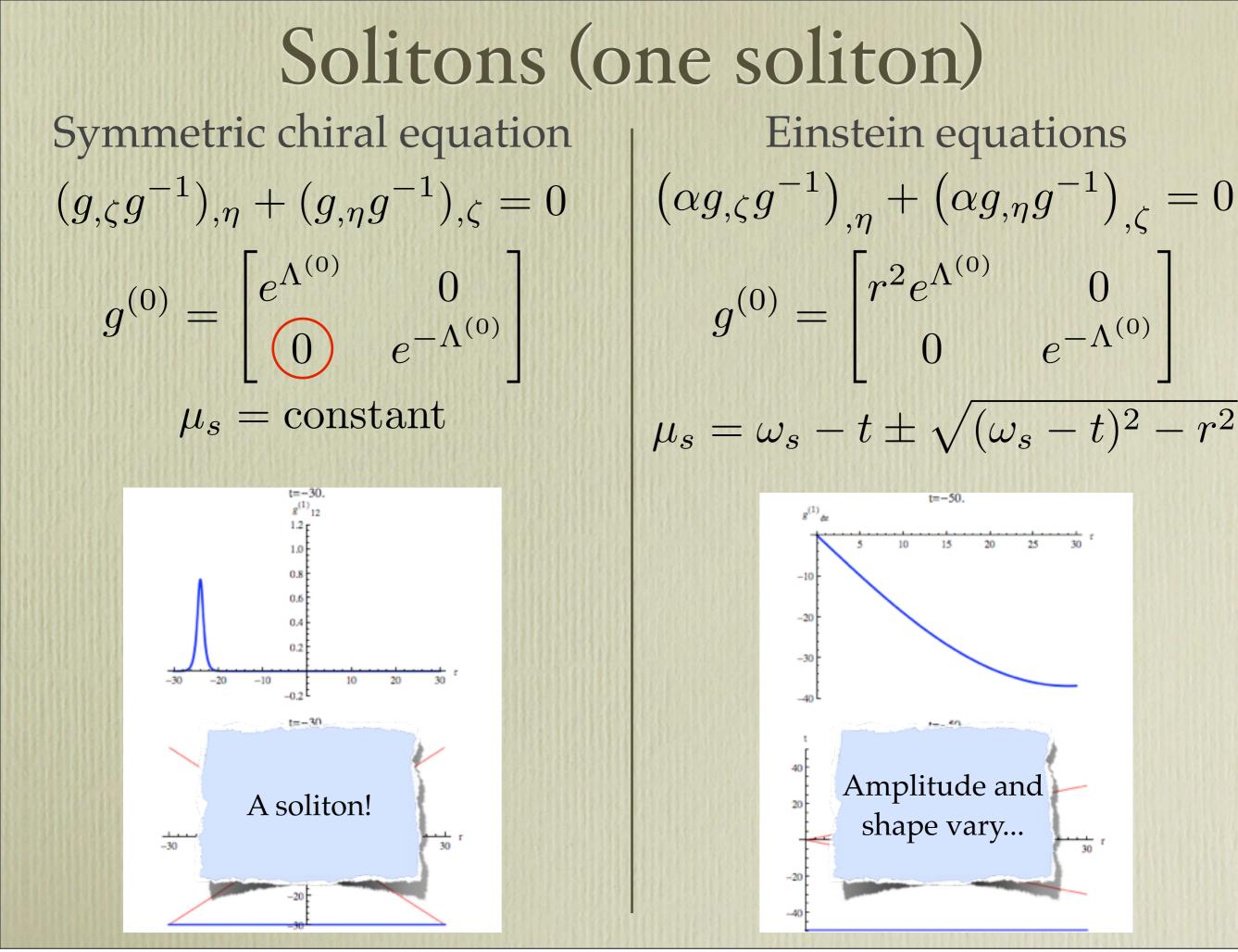
Ricci	$R_{\mu\nu} = 0$
urvature	

The Belinski-Zakharov transform $ds^{2} = f(-dt^{2} + dr^{2}) + g_{ab}dx^{a}dx^{b} \qquad a, b = 1, 2 \quad x^{a} = (\phi, z)$ In matrix form, $g_{\mu\nu} = \begin{bmatrix} -f & 0 & 0 & 0 \\ 0 & g_{11} & g_{12} & 0 \\ 0 & g_{21} & g_{22} & 0 \\ 0 & 0 & 0 & f \end{bmatrix}$ light-cone coordinates $t = \zeta - \eta$ $r = \zeta + \eta$ $R_{\mu\nu} = 0 \qquad \underbrace{\left(\alpha g_{,\zeta} g^{-1}\right)_{,\eta}}_{-A} + \underbrace{\left(\alpha g_{,\eta} g^{-1}\right)_{,\zeta}}_{B} = 0 \quad \det\left(g\right) = \alpha^{2}$ > f is easily integrated once g is known $D_{1} = \partial_{\zeta} - \frac{2\alpha_{,\zeta}\lambda}{\lambda - \alpha}\partial_{\lambda} \\ D_{2} = \partial_{\eta} + \frac{2\alpha_{,\eta}\lambda}{\lambda + \alpha}\partial_{\lambda} \end{bmatrix} Commuting operators D_{1}\psi = \frac{A}{\lambda - \alpha}\psi \\ D_{2}\psi = \frac{B}{\lambda + \alpha}\psi \end{bmatrix} Lax pair$ In the limit $\lambda \to 0$ get $g(\zeta, \eta) = \psi(0, \zeta, \eta)$

The dressing method



'Cylindrical' metrics: $ds^2 = f^{(0)}(-dt^2 + dr^2) + e^{\Lambda^{(0)}}(rd\phi)^2 + e^{-\Lambda^{(0)}}dz^2$



Solitons (two solitons)

For physical reasons, one would like the metric to be <u>asymptotically flat</u>.

The one-soliton solution is <u>never</u> asymptotically flat.

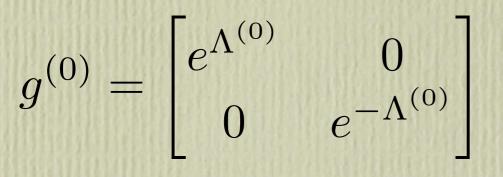
Pole
$$\mu_s = \omega_s - t \oplus \sqrt{(\omega_s - t)^2 - r^2}$$
 + = soliton
- = anti-soliton

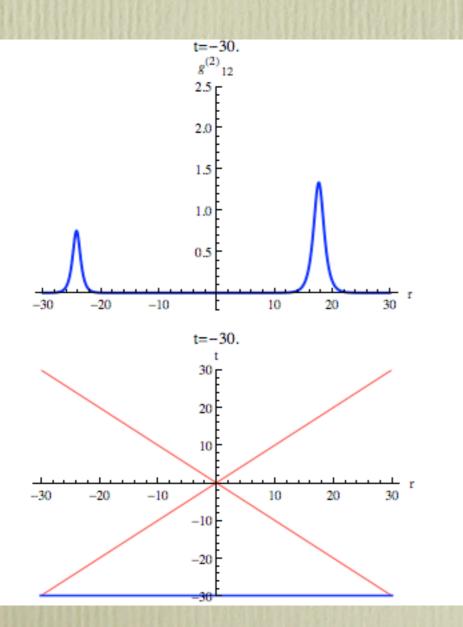
<u>Theorem</u>: If $\Lambda^{(0)} \xrightarrow{|t| \to \infty} 0$ and (# of solitons) = (# of anti-solitons) then the solution is asymptotically flat as $|t| \to \infty$.

Both S-S or AS-AS are <u>never</u> asymptotically flat.

Solitons (two solitons)

Symmetric chiral equation





Einstein equations $g^{(0)} = \begin{bmatrix} r^2 e^{\Lambda^{(0)}} & 0\\ 0 & e^{-\Lambda^{(0)}} \end{bmatrix}$ $\Lambda^{(0)} = 0 \quad \text{(flat)}$ Schwarzschild-Kerr solution -40

Thank you!

Thursday, August 1, 13

Supplemental Slides